Aplikasi Kontrol Kandang
1. Tujuan [kembali]
- mengetahui bentuk rangkaian mikroprosesor kontrol motor dengan sensor jarak, memori eksternal dan 7-segment
- Mengaplikasikan prinsip mikroprosesor dalam kasus aplikasi
2. Alat dan Bahan [kembali]
- sensor GP2DP12
- baterai
- IC 74LS138
- IC 80C51
- IC74LS373
- IC 74LS245
- IC 2764
- IC 6116
- IC 8255A
- ADC 0804
- DAC 0808
- gerbang logika AND
- resistor
- dioda
- kapasitor
- motor dc
- op-amp
- transistor
- LCD (Liquid Crystal Display)
3. Dasar Teori [kembali]
Sensor GP2D12
Sharp GP2D12 adalah sensor jarak analog yang menggunakan infrared untuk mendeteksi jarak antara 10 cm sampai 80 cm. GP2D12 mengeluarkan output voltase non-linear dalam hubungannya dengan jarak objek dari sensor dan menggunakan interface analog to digital converter (ADC).
Spesifikasi Teknis
• Range:10 to 80cm
• Update frequency / period:25Hz / 40ms
• Direction of the measured distance:Very directional, due to the IR LED
• Max admissible angle on flat surface:> 40°
• Power supply voltage:4.5 to 5.5V
• Noise on the analog output:< 200mV
• Mean consumption:35mA
• Peak consumption:about 200mA
Kelemahan
• Respon 40ms
• Error bila Jarak<10cm dan pada Cermin
• Hanya dapat mengukur <80cm
Kelebihan
• Dapat mengukur jarak pada bidang miring
• Sudut pengukuran sempit
• Sangat direktif
Berikut hubungan antara jarak deteksi objek terhadap output analog sensor.
Baterai
Baterai merupakan sebuah benda yang dapatatau bisa mengubah energi kimia menjadi energi listrik. Energi listrik yang dihasilkan oleh baterai tersebut sama seperti accumulator, yakni listrik searah dikatankan DC. Jumlah listrik yang dihasilkan tersebut terngatung dari seberapa besar baterai tersebut.
Fungsi Baterai
Sangat beragam fungsi dari baterai dalam kehidupan sehari-hari namun memiliki intinya yang sama yakni sebagai sumber energi, karena hampir pada semua alat elektronik yang sifatnya mobile juga perlu baterai sebagai sumber energi. Sebut misalnya seperti HP, senter, power bank, drone, remote TV dan AC, dan lain sebagainya. Semua alat-alat tersebut membutuhkan baterai agar bisa bekerja. Sampai tahun 2018 ini tercatat terdapat beberapa jenis baterai yang bisa atau dapat kita temukan dengan di pasaran. Namun Pada dasarnya jenis baterai itu dikategorikan kedalam dua macam yakni Baterai Primer dan juga Baterai Sekunder.
Baterai primer bisa dibilang sebagai baterai untuk 1 kali pakai (sekali pakai) Yang termasuk kedalam golongan baterai primer misalnya seperti baterai jenis Zinc-Carbon, Alkali, Lithium, dan juga Silver Oxide. Harga baterai primer juga cenderung lebih murah. Sedangkan
Baterai sekunder merupakan baterai yang dapat dicharge, dan yang termasuk baterai sekunder misalnya seperti baterai jenis Ni-Cd, Ni-MH, dan juga Li-ion.
Macam Jenis Baterai Primer :
1. Baterai Zinc-Carbon
Jenis baterai primer yang pertama merupakan baterai Zinc Carbon alias baterai Seng Karbon.
Baterai yang satu ini juga juga sering disebut dengan baterai Heavy Duty.
Baterai jenis mudah ditemukan dengan mudah pada toko-toko maupun supermarket.
2. Baterai Alkali
Baterai ini juga termasuk juga kedalam jenis baterai primer karena tidak dapat untuk diisi ulang.
Sebenarnya baterai Alkali ini hampir sama seperti baterai Seng Karbon, hanya saja sedikit berbeda dengan daya tahannya lkarena baterai alkali ini ebih lama disebabkan menggunakan elektrolit dari bahan Potassium hydroxide, yang tidak lain Zat Alkali (Alkaline).
3. Baterai Lithium
Lithium Memiliki kualitas lebih bagus dibanding dengan dua jenis baterai sebelumnya.
Baterai Lithium ini punya kinerja yang lebih baik.
Selain itu baterai Lithium dapat disimpan dalam waktu hingga lebih dari 10 tahun.
Biasanya baterai Lihium mempunyai bentuk bulat pilih layaknya koin.
4. Baterai Silver Oxide
Materialnya yang terbuat dari silver/perak yang membuat harga untuk jenis ini relatif mahal.
Baterai jenis ini memiliki kekuatan tinggi walaupun bentuknya itu kecil dan ringan.
Macam-macam Baterai Sekunder :
1. Baterai Ni-Cd
Baterai Ni-Cd atau singkatan dari NIcket-Cadmium.
Baterai jenis ini bisa untuk diisi ulang karena menggunakan material yakni elektrolit Nickel Oxide Hydroxide serta Metallic Cadmium.
Tapi sayangnya baterai jenis ini didalamnya terkandung bahan beracun berupa Carcinogenic Cadmium yang bisa membahayakan kesehatan manusia serta juga lingkungan.
2. Baterai Ni-MH
Ni-MH atau singkatan dari Nickel-Metal Hydride.
Baterai jenis ini mempunyai kapasitas yang lebih besar kurang lebih 30% jika dibanding dengan baterai Ni-Cd.
Selain dari hal itu baterai jenis tersebut bisa juga dilakukan isi ulang bisa sampai lebih 100 kali sehingga akan dapat menghemat biaya jika dibanding dengan menggunakan baterai primer.
3. Baterai Li-ion
Baterai jenis inilah yang saat ini dominan digunakan di segala macam peralatan elektronika mulai dari smartphone, kamera, sampai pada laptop.
Kelebihan dari jenis baterai ini karena memiliki bobot yang ringan dan juga memiliki kapasitas yang besar.
IC 74LS138
IC 74138 adalah sebuah aplikasi demultiplexer. Demultiplexer adalah perangkat elektronik yang berfungsi untuk memilih salah satu data dari banyak data menggunakan suatu data input. Demultiplexer sering disebut sebagai perangkat dengan sedikit input dan banyak output ic ini cocok untuk pengguna mikrokontroler yang membutuhkan output.
Demultiplexer 74LS138 berfungsi untuk memilih salah satu dari 8 jalur dengan memberikan data BCD 3 bit pada jalur masukan A0 – A2. Demultiplexer 74LS138 memiliki 8 jalur keluaran Q0 – Q7, 3 jalur masukan A0 – A2 dan 3 jalur kontrol expansi E1 – E3.
IC 80C51
IC 80C51 Merupakan IC mikrokontroller ROM 8 bit. Blok diagramnya adalah:
IC 74LS373
IC 74LS373 adalah salah satu flip-flop data yang memiliki 8 latch data dengan 3 kondisi output (high, low, dan impedansi tinggi).
Adapun konfigurasi pin pada 74LS373 adalah sebagai berikut:
a. D0 – D7 adalah data input (Dn).
b. LE adalah input Latch Enable yang aktif ketika berlogika high.
c. OE adalah input Output Enable yang aktif ketika berlogika low.
d. Q1 – Q7 adalah data output (Qn).
IC 74LS373 terdiri dari delapan D flip flop yang melaluinya masukan diberikan ke masing-masing pin IC. Data Flip flop berubah secara asinkron ketika Latch enable (LE) dalam keadaan High. Seperti yang kita ketahui pengoperasian flip flop itu masukan apapun ke pin D pada keadaan sekarang akan diberikan sebagai keluaran pada siklus jam berikutnya. Tetapi ketika Pin Pengunci Latch ditarik rendah, data akan terkunci sehingga data muncul secara instan memberikan aksi Latching.
Pin Output Enable juga berperan penting dalam cara kerja IC 74LS373 ini. Saat pin (OE) low input data akan muncul di output, namun saat OE tinggi maka output akan berada dalam keadaan impedansi tinggi. IC beroperasi dengan maksimum 5 V dan banyak digunakan di berbagai jenis peralatan elektronik.
IC TTL 74LS245 yang menurut data Sheet adalah ‘ Octal Bus Tranceiver, 3 State’. Yaitu IC TTL yang dapat digunakan sebagai masukan dan keluaran pada kaki yang sama, tiga kondisi tersebut adalah: Masukan, Keluaran, Pengunci, dan tidak membalikkan keadaan logika pada input ke output.
Cara Kerja Rangkaian :
IC TTL 74LS245 dapat menangani 8 buah jalur masukan maupun keluaran, dengan dikontrol oleh kaki DIR dan kaki E. Jika kaki 1 (DIR) IC diberi Logika 1 dan kaki 19 (E) IC diberi Logika 0, maka kaki 2-9 (A) IC menjadi Input dan kaki 11-18 (B) menjadi Output. Sebaliknya jika kaki 1 (DIR) IC diberi logika 0 dan kaki 19 (E) IC juga diberi logika 0, maka kaki 11-18 (B) menjadi Input dan kaki 2-9 (A) IC menjadi output. Dan jika kaki 1 dan 19 IC diberi logika 1 atau kaki 1 IC diberi logika 0 dan kaki 19 IC diberi logika 1 (DIR=1 dan E=1 atau DIR=0 dan E=1), maka IC menjadi kondisi impedansi tinggi atau logika tidak diketahui sama sekali atau data terisolasi.
IC 2764
IC 2764 Merupakan IC EPROM memori unit sistem mikroprosessor.
IC 6116
IC memori 6116 merupakan salah satu RAM statik berkapasitas 16.384 bit atau 2 kbyte. IC 6116 mempunyai 8 jalur data (D0-D7) dan 11 jalur alamat (A0-A10). Untuk menulis data digunakan sinyal W (aktif LOW) dan untuk membaca data digunakan sinyal G (aktif LOW). Kaki E (aktif LOW) digunakan untuk mengijinkan memori menulis atau membaca data pada jalur data. Kaki 12 dihubungkan ke GND dan kaki 24 dihubungkan ke +5V.
RAM 6116 yang dipakai didalam sistem minimum mempunyai pin CS (Chip Select) untuk mengaktifkan IC tersebut, pin OE (Output Enable) sebagai pin sinyal kontrol RD untuk membaca data dan pin WE (Write Enable) sebagai pin sinyal kontrol WR untuk menulis data seperti gambar 2. Selain itu, terdapat pin-pin untuk addresing A0-A10, pin data D0-D7 untuk masukan dan keluaran data 8 bit. Sisa bus address mulai A11-A19 dipergunakan untuk rangkaian decoding bagi RAM yang bersangkutan.
Kombinasi dari ketiga pin-pin tersebut dapat dilihat fungsinya seperti pada tabel 1.
Tabel 1 Fungsi pin-pin CS, OE dan WE pada RAM 6116
-CS
|
-OE
|
-WE
|
Mode
|
Pin–pin I-O
|
1
|
X
|
X
|
Non aktif
|
High Z
|
0
|
0
|
1
|
Read
|
Out
|
0
|
1
|
0
|
Write
|
In
|
Dari tabel fungsi diatas dapat dilihat bahwa pin CS memegang peranan utama dalam kerja RAM statis 6116. Bila pin Chip Select aktif low maka operasi read dan write dapat dilaksanakan. Untuk mengaktifkan pin CS dapat diberikan input low dari output decoding I-O.
Urutan langkah-langkah yang dilaksanakan mikroprosessor dalam melaksanakan instruksi read atau write pada RAM adalah sebagai berikut:
a. Address dari memori yang akan dituju diload oleh mikroprosesor ke bus address setelah terdapat sinyal ALE.
b. Chip Select yang dari RAM yang dituju akan aktif low sehingga RAM me-input-kan address dari bus address misalnya A0-A10 seperti pada RAM 6116.
c. Kemudian mikroprosessor mengirim sinyal kontrol RD atau WR pada RAM.
d. RAM melakukan pernbacaan atau penulisan sesuai dengan kombinasi sinyal control yang diterima seperti tabel 1 diatas.
IC 8255A
PPI (Programmable Peripheral Interface) 8255 adalah IC yang dirancang untuk membuat port masukan dan keluaran paralel. Chip ini diproduksi oleh Intel Corporation dan dikemas dalam bentuk 40 pin dual in line package dan dirancang untuk berbagai fungsi antarmuka dalam mikroprosesor. IC ini mempunyai 24 bit I/O yang terorganisir menjadi 3 port 8 bit (24 jalur) dengan nama Port A, Port B, dan Port C. Masing-masing port ini dapat berfungsi sebagai input atau output, termasuk port C upper dan lower difungsikan sama atau beda. Fungsi ini terbentuk dari kondisi data bus yang deprogram/dirancang. Konfigurasi fungsi dari 8255 adalah diprogram oleh sistem software sehingga tidak diperlukan komponen gerbang logika eksternal untuk perangkat perpheral interface.
Di bawah ini menunjukkan diagram blok bagian dalam dari PPI 8255.
PPI 8255 memiliki buffer bus data dua arah, yang berarti dapat berfungsi baik sebagai port input maupun port output. Arah aliran data dapat dijelaskan dengan menggunakan pengaturan logika Read/Write. Secara mudah dapat diuraikan dengan tabel 1 berikut ini :
Tabel 1. Format Pembacaan dan Penulisan PPI 8255
PPI 8255 bekerja dalam tiga mode, yaitu :
a. Mode 0 :
Port A, Port B, dan Port C bekerja sebagai port I/O sederhana tanpa jabat tangan. Pada mode ini CPU sama sekali tidak memperhatikan status 8255. CPU mentransfer data tanpa mempersoalkan apa yang terjadi pada 8255. Port A dan Port B bekerja sebagai port 8 bit sedangkan Port C dapat dibuat bekerja dalam 8 bit atau berdiri sendiri dalam 4 bit lower dan 4 bit upper secara terpisah. Pemakaian mode 0 pada PPI 8255 secara diagram dapat digambarkan pada Gambar 2.
b. Mode 1 :
Port A, Port B bekerja sebagai port I/O dengan jabat tangan menggunakan sebagian dari pena Port C. Saluran PC0, PC1, dan PC2 berfungsi sebagai saluran jabat tangan untuk Port B sedangkan Port A menggunakan saluran PC3, PC4, dan PC5 sebagai sinyal jabat tangan. PC6 dan PC7 dapat digunakan untuk saluran I/O. Diagram operasi 8255 pada mode 1 digambarkan pada Gambar 3.
c. Mode 2 :
Hanya Port A dapat dibuat sebagai port I/O dua arah dengan jabat tangan. Port A dapat digunakan sebagai port untuk transfer data dua arah dengan jabat tangan. Ini artinya data dapat masuk atau keluar dari saluran yang sama. Mode ini mengembangkan sistem saluran (bus) ke mikroprosesor atau mentransfer byte data ke dan dari floppy disk controller. Pada mode 2 saluran PC3 sampai PC7 digunakan sebagai saluran jabat tangan untuk Port A. Bentuk operasi 8255 sebagai mode 2 digambarkan pada diagram Gambar 4.
Format control word PPI 8255 ditunjukkan pada Gambar 5 di bawah ini. Gambar 5.a digunakan untuk menformat control word berdasar pada mode kerja., sedangkan gambar 5.b digunakan untuk menformat control word untuk Port C pada operasi set/reset bit.
ADC 0804
ADC 0804 merupakan salah satu Analog to Digital Converter yang banyak digunakan untuk menghasilkan data 8 bit. Dengan metode pengukur aras tegangan sampling dan mengubahnya ke dalam sandi biner menggunakan metode pengubahan dengan tipe pembanding langsung atau successive approximation. Konstruksi Pin IC ADC 0804 Konstruksi Pin ADC IC 0804,pin adc 0804,dasar adc 0804,teori dasar ic adc 0804,adc 0804,pengertian adc 0804,definisi adc 0804,funsi adc o804,rumus adc 0804,artikel adc 0804 IC ADC 0804 mempunyai dua input analog, Vin(+) dan Vin(-), sehingga dapat menerima input diferensial. Input analog sebenarnya (Vin) sama dengan selisih antara tegangan-tegangan yang dihubungkan dengan ke dua pin input yaitu Vin = Vin(+) – Vin(-). Apabila input analog berupa tegangan tunggal, tegangan ini harus dihubungkan dengan Vin(+), sedangkan Vin(-) digroundkan. Untuk operasi normal, ADC 0804 menggunakan Vcc = +5 Volt sebagai tegangan referensi. Dalam hal ini jangkauan input analog mulai dari 0 Volt sampai 5 Volt (skala penuh), karena IC ini adalah SAC 8-bit, resolusinya akan sama dengan persamaan berikut : Resolusi=\frac{Vout_{skala penuh}}{2^n-1}=\frac{5Volt}{255}=19,6mVolt Dimana n menyatakan jumlah bit output biner IC analog to digital converter IC ADC 0804 memiliki generator clock internal yang harus diaktifkan dengan menghubungkan sebuah resistor eksternal (R) antara pin CLK R/CLK OUT dan CLK IN serta sebuah kapasitor eksternal (C) antara CLK IN dan ground digital. Frekuensi clock yang diperoleh sama dengan : f=\frac{0,91}{RC} Untuk sinyal clock ini dapat juga digunakan sinyal eksternal yang dihubungkan ke pin CLK IN. ADC 0804 memiliki 8 output digital sehingga dapat langsung dihubungkan dengan saluran data mikrokomputer. Input Chip Select (aktif LOW) digunakan untuk mengaktifkan ADC 0804. Jika berlogika HIGH, ADC 0804 tidak aktif (disable) dan semua output berada dalam keadaan impedansi tinggi. Input Write atau Start Convertion digunakan untuk memulai proses konversi. Untuk itu harus diberi pulsa logika 0. Sedangkan output interrupt atau end of convertion menyatakan akhir konversi. Pada saat dimulai konversi, akan berubah ke logika 1. Di akhir konversi akan kembali ke logika 0. ADC ini relatif cepat dan mempunyai ukuran kecil. Keuntungan tambahan adalah setiap sampling diubah dalam selang waktu yang sama tidak tergantung pada arus masukan dan secara keseluruhan ditentukan oleh frekuensi yang mengendalikan clock dan resolusi dari pengubah. Sebagai contoh, pengubah 8 bit digunakan untuk menentukan arus logika setiap bit secara berurutan mulai dari bit signifikan terbesar jika frekuensi clock 10 KHz, waktu pengubahan 8 x periode clock = 8 x 0,1 mdetik. Jika frekuensi clock dinaikkan menjadi 1 MHz, waktu pengubahan akan berkurang menjadi 8 udetik. Kekurangan pengubahan jenis ini adalah mempunyai kekebalan rendah terhadap noise dan diperlukan adanya pengubah digital ke analog yang tepat dan pembanding dengan unjuk kerja yang tinggi. Sebuah contoh diagram pin ADC 0804 adalah ditunjukkan pada gambar 7, IC ADC 0804 adalah sebuah CMOS 8bit dan IC ADC ini bekerja dibawah 100 us. Gambar rangkaian dibawah menunjukkan sebuah pengetes rangkaian yang menggunakan IC ADC 0804 dimana input tegangan analog dimasukkan dengan mengatur potensio 10 Kohm yang dihubungkan dengan ground dan tegangan (+5 volt). Hasil dari ADC adalah 1/255 (28 – 1) dari skala penuh tegangan 5 Volt. Untuk setiap penambahan 0,02 volt (1/255 x 5 volt = 0,02 volt ). Jika input analog diberi 0,1 volt maka keluaran binernya = 0000 0101 ( 0,1 volt/0,02 volt = 5 maka binernya = 0000 0101 ). Rangkaian Dasar ADC Dengan ADC IC 0804 Rangkaian Aplikasi ADC IC 0804,rangkaian adc 0804,contoh rangkaian adc 804,adc 804,rangkaian ic 804,rangkaian test adc 0804,rangkaian percobaan adc 0804,contoh rangkaian adc Berbagi Artikel "ADC (Analog to Digital Convertion)
Analog to Digital Converter (ADC) adalah sebuah piranti yang dirancang untuk mengubah sinyal-sinyal analog menjadi bentuk sinyal digital. IC ADC 0804 dianggap dapat memenuhi kebutuhan dari rangkaian yang akan dibuat. IC jenis ini bekerja secara cermat dengan menambahkan sedikit komponen sesuai dengan spesifikasi yang harus diberikan dan dapat mengkonversikan secara cepat suatu masukan tegangan.
Diagram konfigurasi pin ADC0804 ditunjukkan pada gambar, Pin 11 sampai 18 (keluaran digital) adalah keluaran tiga keadaan, yang dapat dihubungkan langsung dengan bus data bilamana diperlukan. Apabila CS (pin 1) atau RD (pin2) dalam keadaan high (“1”), pin 11 sampai 18 akan mengambang (high impedanze), apabila CS dan RD rendah keduanya, keluaran digital akan muncul pada saluran keluaran. Sinyal mulai konversi pada WR (pin 3). Untuk memulai suatu konversi, CS harus rendah. Bilamana WR menjadi rendah, konverter akan mengalami reset, dan ketika WR kembali kepada keadaan high, konversi segera dimulai.
Konversi detak konverter harus terletak dalam daereh frekuensi 100 sampai 800kHz. CLK IN ( pin 4) dapat diturunkan dari detak mikrokontroller, sebagai kemungkinan lain, kita dapat mempergunakan pembangkit clock internal dengan memasang rangkaian RC antara CLN IN ( pin 4) dan CLK R ( pin 19). Pin 5 adalah saluran yang digunakan untuk INTR, sinyal selesai konversi. INTR akan menjadi tinggi pada saat memulai konversi, dan akan aktif rendah bila konversi telah selesai. Tepi turun sinyal INTR dapat dipergunakan untuk menginterupsi sistem mikrokontroller, supaya mikrokontroller melakukan pencabangan ke subrutine pelayanan yang memproses keluaran konverter. Pin 6 dan 7 adalah masukan diferensial bagi sinyal analog. A/D ini mempunyai dua ground, A GND (pin 8) dan D GND ( pin10). Kedua pin ini harus dihubungkan dengan ground. Pin 20 harus dihubungkan dengan catu daya +5V. Pada A/D 0804 merupakan tegangan referensi yang digunakan untuk offset suatu keluaran digital maksimum.
Tabel Konversi :
Vin
(volt)
|
Data
Digital (biner)
|
Data
Digital (desimal)
|
0,000
|
0000
0000
|
0
|
0,0196
|
0000
0001
|
1
|
0,0392
|
0000
0010
|
2
|
…
|
…
|
…
|
5
|
1111
1111
|
255
|
A/D ini dapat dirangkai untuk menghasilkan konversi secara kontinu. Untuk melaksanakannya, kita harus menghubungkan CS, dan RD ke ground dan menyambungkan WR dengan INTR. Maka dengan ini keluaran digital yang kontinu akan muncul, karena sinyal INTR menggerakkan masukan WR. Pada akhir konversi INTR berubah menjadi low, sehingga keadaan ini akan mereset konverter dan mulai konversi.
Hal-hal yang juga perlu diperhatikan dalam penggunaan ADC ini adalah tegangan maksimum yang dapat dikonversikan oleh ADC dari rangkaian pengkondisi sinyal, resolusi, pewaktu eksternal ADC, tipe keluaran, ketepatan dan waktu konversinya. Ada banyak cara yang dapat digunakan untuk mengubah sinyal analog menjadi sinyal digital yang nilainya proposional. Jenis ADC yang biasa digunakan dalam perancangan adalah jenis Successive Approximation Convertion (SAR) atau pendekatan bertingkat yang memiliki waktu konversi jauh lebih singkat dan tidak tergantung pada nilai masukan analognya atau sinyal yang akan diubah.
CARA KERJA ADC0804
Pertama-tama chip select ( CS ) diaktifkan dahulu dengan cara memberikan logika nol, apabila ADC yang dipakai hanya satu maka cukup hubungkan saja kaki CS ke ground, sehingga ADC akan selalu dalam keadaan aktif. Kemudian Start of Conversion ( SOC ) dilakukan dengan mememberi logika High-Low-High pada kaki WR. Setelah menerima kondisi tersebut, ADC 0804 mulai melakukan konversi yang memerlukan waktu sekitar 64 periode sinyal denyut pada kaki clock. Setelah proses konversi selesai , ADC akan memberikan logika nol pada kaki INTR yang akan menginterupsi mikrokontroller, sehingga mikrokontroller tahu bahwa proses konversi telah selesai. Berikutnya mikrokontroller mulai mengambil data hasil konversi yang telah selesai, untuk mengambil data mikrokontroller harus meberikan logika nol terlebih dulu pada kaki RD. setelah logika nol diterima oleh kaki RD, akan mengakibatkan penyangga ( tristate buffer ) pada DB0-DB7 “membuka”, sehingga data hasil konversi bisa diambil oleh mikrokontroller.
ADC 0804 merupakan salah satu Analog to Digital Converter yang banyak digunakan untuk menghasilkan data 8 bit. Dengan metode pengukur aras tegangan sampling dan mengubahnya ke dalam sandi biner menggunakan metode pengubahan dengan tipe pembanding langsung atau successive approximation.
ADC 0804 merupakan salah satu Analog to Digital Converter yang banyak digunakan untuk menghasilkan data 8 bit. Dengan metode pengukur aras tegangan sampling dan mengubahnya ke dalam sandi biner menggunakan metode pengubahan dengan tipe pembanding langsung atau successive approximation. Konstruksi Pin IC ADC 0804 Konstruksi Pin ADC IC 0804,pin adc 0804,dasar adc 0804,teori dasar ic adc 0804,adc 0804,pengertian adc 0804,definisi adc 0804,funsi adc o804,rumus adc 0804,artikel adc 0804 IC ADC 0804 mempunyai dua input analog, Vin(+) dan Vin(-), sehingga dapat menerima input diferensial. Input analog sebenarnya (Vin) sama dengan selisih antara tegangan-tegangan yang dihubungkan dengan ke dua pin input yaitu Vin = Vin(+) – Vin(-). Apabila input analog berupa tegangan tunggal, tegangan ini harus dihubungkan dengan Vin(+), sedangkan Vin(-) digroundkan. Untuk operasi normal, ADC 0804 menggunakan Vcc = +5 Volt sebagai tegangan referensi. Dalam hal ini jangkauan input analog mulai dari 0 Volt sampai 5 Volt (skala penuh), karena IC ini adalah SAC 8-bit, resolusinya akan sama dengan persamaan berikut : Resolusi=\frac{Vout_{skala penuh}}{2^n-1}=\frac{5Volt}{255}=19,6mVolt Dimana n menyatakan jumlah bit output biner IC analog to digital converter IC ADC 0804 memiliki generator clock internal yang harus diaktifkan dengan menghubungkan sebuah resistor eksternal (R) antara pin CLK R/CLK OUT dan CLK IN serta sebuah kapasitor eksternal (C) antara CLK IN dan ground digital. Frekuensi clock yang diperoleh sama dengan : f=\frac{0,91}{RC} Untuk sinyal clock ini dapat juga digunakan sinyal eksternal yang dihubungkan ke pin CLK IN. ADC 0804 memiliki 8 output digital sehingga dapat langsung dihubungkan dengan saluran data mikrokomputer. Input Chip Select (aktif LOW) digunakan untuk mengaktifkan ADC 0804. Jika berlogika HIGH, ADC 0804 tidak aktif (disable) dan semua output berada dalam keadaan impedansi tinggi. Input Write atau Start Convertion digunakan untuk memulai proses konversi. Untuk itu harus diberi pulsa logika 0. Sedangkan output interrupt atau end of convertion menyatakan akhir konversi. Pada saat dimulai konversi, akan berubah ke logika 1. Di akhir konversi akan kembali ke logika 0. ADC ini relatif cepat dan mempunyai ukuran kecil. Keuntungan tambahan adalah setiap sampling diubah dalam selang waktu yang sama tidak tergantung pada arus masukan dan secara keseluruhan ditentukan oleh frekuensi yang mengendalikan clock dan resolusi dari pengubah. Sebagai contoh, pengubah 8 bit digunakan untuk menentukan arus logika setiap bit secara berurutan mulai dari bit signifikan terbesar jika frekuensi clock 10 KHz, waktu pengubahan 8 x periode clock = 8 x 0,1 mdetik. Jika frekuensi clock dinaikkan menjadi 1 MHz, waktu pengubahan akan berkurang menjadi 8 udetik. Kekurangan pengubahan jenis ini adalah mempunyai kekebalan rendah terhadap noise dan diperlukan adanya pengubah digital ke analog yang tepat dan pembanding dengan unjuk kerja yang tinggi. Sebuah contoh diagram pin ADC 0804 adalah ditunjukkan pada gambar 7, IC ADC 0804 adalah sebuah CMOS 8bit dan IC ADC ini bekerja dibawah 100 us. Gambar rangkaian dibawah menunjukkan sebuah pengetes rangkaian yang menggunakan IC ADC 0804 dimana input tegangan analog dimasukkan dengan mengatur potensio 10 Kohm yang dihubungkan dengan ground dan tegangan (+5 volt). Hasil dari ADC adalah 1/255 (28 – 1) dari skala penuh tegangan 5 Volt. Untuk setiap penambahan 0,02 volt (1/255 x 5 volt = 0,02 volt ). Jika input analog diberi 0,1 volt maka keluaran binernya = 0000 0101 ( 0,1 volt/0,02 volt = 5 maka binernya = 0000 0101 ).
DAC 0808
IC DAC0808 adalah IC digital to analog dengan input 8 bit, seperti namanya digital to analog fungsi utamanya yaitu untuk mengubah dari data berupa digital menjadi tegangan analog, DAC prinsip kerjanya berkebalikan dengan ADC, jika DAC di1Wberikan nilai 0 maka tegangan output adalah 0 volt, kemudian jika diberikan nilai 255 maka tegangan output adalah 5 volt, jika diantara 0 dengan 255 dapat dihitung menggunakan rumus.
Vout = Tegangan Output
Nilai DAC = Nilai yang ingin dikonversi ke tegangan
Vref = tegangan referensi, biasanya 12 volt
255 = full range 8 bit DAC0808
Skematik rangkaiannya
Gerbang logika AND
Simbol gerbang AND standar kita gunakan pada relay saklar, rangkaian pneumatik, dioda diskrit, dan transistor atau IC. Ini merupakan simbol yang harus anda hafal dan karena digunakan hingga sekarang untuk gerbang AND.
Istilah "Logika" biasanya digunakan untuk menyatakan suatu proses pengambilan keputusan. Maka suatu gerbang logika merupakan suatu rangkaian yang dapat memutuskan untuk berkata ya atau tidak pada keluaran berdasarkan masukan.
Gerbang AND akan berlogika 1 apabila semua inputnya berlogika 1, namun bila salah satu atau semua keluarannya berlogika 0 maka keluarannya berlogika 0.
Tabel Kebenaran Gerbang AND
Perhatikan Tabel kebenaran dibawah untuk menjelaskan gerbang AND
Tabel diatas disebut tabel kebenaran untuk gerbang AND memberikan semua kemungkinan kombinasi masukan dari masukan A dan B. Tabel kebenaran mendefinisikan dengan sangat tepat operasi gerbang AND.
Ekspresi Boolean Gerbang AND
Sampai disini anda telah menghafal simbol logika dan tabel gerbang AND. Sekarang anda akan mempelajari metode penulisan pernyataan "masukan A di-AND-kan dengan masukan B untuk mendapatkan keluaran Y". Metode singkat untuk menuliskan pernyataan ini disebut ekspresi Boolean ("Boolean" dari aljabar Boolean-aljabar-logika)
Ekspressi Boolean merupakan suatu bahasa universal yang digunakan oleh ahli rekayasa dan teknisi daam elektronika digital. Perhatikan tabel dibawah
Perlu dicatat bahwa suatu perkalian titik digunakan untuk menyimbolkan fungsi AND dalam teori Boolean. Pada tabel diatas menggambarkan empat cara yang seringkali digunakan untuk menyatakan peng-AND-an masukan A dan B. Semua metode ini digunakan secara luas dan harus dipelajari oleh setiap orang yang bekerja di bidang elektronika digital.
Penggambaran Gerbang AND menggunakan Dioda
Apabila A = 2 volt yang dinyatakan pada keadaan logik 0 dan B 10 Volt yang dinyatakan pada keadaan logik 1, maka tegangan output Q = 2 volt yang dinyatakan pada keadaan logik 1 0.
Artinya dioda D1 pada keadaan forward bias dan dioda D2 pada keadaan reverse bias, sehingga tegangan pada Q pada keadaan logik 0 (±2 V), jika A =10 V dan B = +10 V, maka kedua dioda pada keadaan reverse bias sehingga tegangan pada Q = 10 V. Artinya A =1 dan B =1, maka Q=1.
Penjelasan Gerbang AND Dengan Transistor
Pada gambar terlihat jika baterai A dan B pada posisi minimum, maka kedua transistor tidak bekerja (tidak konduk) sehingga tegangan Q adalah 0. Artinya A = 0 dan B = 0 maka Q = 0.
Sebaliknya jika tegangan baterai A pada keadaan logik 1 (misal A = 10 V) dan baterai pada keadaan logik (B = 10 V), maka kedua transistor bekerja sehingga egangan pada beban RL ada (pada keadaan logik 1). Artinya A = 1, B = 1 maka Q = 1.
Resistor
Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika.
Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
contoh perhitungan resistor dengan gelang 4 warna
Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.
Komponen Dioda
Struktur utama dioda adalah dua buah kutub elektroda berbahan konduktor yang masing-masing terhubung dengan semikonduktor silikon jenis p dan silikon jenis n. Anoda adalah elektroda yang terhubung dengan silikon jenis p dimana elektron yang terkandung lebih sedikit, dan katoda adalah elektroda yang terhubung dengan silikon jenis n dimana elektron yang terkandung lebih banyak. Pertemuan antara silikon n dan silikon p akan membentuk suatu perbatasan yang disebut P-N Junction.
Material semikonduktor yang digunakan umumnya berupa silikon atau germanium. Adapun semikonduktor jenis p diciptakan dengan menambahkan material yang memiliki elektron valensi kurang dari 4 (Contoh: Boron) dan semikonduktor jenis n diciptakan dengan menambahkan material yang memiliki elektro valensi lebih dari 4 (Contoh: Fosfor).
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
Kondisi tegangan positif (Forward-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
Berfungsi untuk menghilangkan riak yang tersisa setelah gelombang disearahkan oleh diode bridge.
Kapasitor [C] gambaran sederhananya terdiri dari dua keping sejajar yang memiliki luasan [A] dan dipisahkan dengan jarak yang sempit sejauh [d]. Seringkali kedua keping tersebut digulung menjadi silinder dengan sebuah insulator atau kertas sebagai pemisah kedua keping. Berbagai tipe kapasitor, (kiri) keping sejajar, (tengah) silindris, (kanan) gambar beberapa contoh asli yang digunakan pada peralatan elektronik.
Perlu kamu ketahui bahwa walaupun memiliki fungsi yang hampir sama, namun baterai berbeda dengan kapasitor. Kapasitor berfungsi hanya sebagai penyimpan muatan listrik sementara, sedangkan baterai selain juga dapat menyimpan muatan listrik, baterai juga merupakan salah satu sumber tegangan listrik. Karena baterai perbedaan itu, baterai juga memiliki simbol yang berbeda pada rangkaian listrik. Simbol baterai dinotasikan dengan:
[Simbol baterai]
Contoh penggunaan kedua simbol tersebut pada rangkaian listrik:
Kamu dapat mencari nilai kapasitas atau kapasitansi suatu kapasitor, yakni jumlah muatan listrik yang tersimpan. Untuk bentuk paling umum yaitu keping sejajar, persamaan kapasitansi dinotasikan dengan:
Dimana:
C = kapasitansi (F, Farad) (1 Farad = 1 Coulomb/Volt)
Q = muatan listrik (Coulomb)
V = beda potensial (Volt)
Nilai kapasitansi tidak selalu bergantung pada nilai dan . Besar nilai kapasitansi bergantung pada ukuran, bentuk dan posisi kedua keping serta jenis material pemisahnya (insulator). Nilai usaha dapat berupa positif atau negatif tergantung arah gaya terhadap perpindahannya. Untuk jenis keping sejajar dimana keping sejajar memiliki luasan [A] dan dipisahkan dengan jarak [d], dapat dinotasikan dengan rumus:
Dimana:
A = luasan penampang keping (m2)
d = jarak antar keping (m)
= permitivitas bahan penyekat ()
Jika antara kedua keping hanya ada udara atau vakum (tidak terdapat bahan penyekat), maka nilai permitivitasnya dipakai .
Muatan sebelum disisipkan bahan penyekat () sama dengan muatan setelah disisipkan bahan penyekat (), sesuai prinsip bahwa muatan bersifat kekal. Beda potensialnya dinotasikan dengan rumus:
Kapasitor menyimpan energi dalam bentuk medan listrik. Besar energi [W] yang tersimpan pada dapat dicari menggunakan rumus:
Dimana:
W = jumlah energi yang tersimpan dalam kapasitor (Joule)
Rangkaian Kapasitor
Dua kapasitor atau lebih dapat disusun secara seri maupun paralel dalam satu rangkaian listrik. Rangkaian seri memiliki sifat-sifat yang berbeda dengan rangkaian paralel. Berikut diberikan tabel sifat-sifatnya pada rangkaian seri dan paralel.Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.
Op Amp
Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.
Op-Amp umumnya dikemas dalam bentuk IC, sebuah IC Op-Amp dapat terdiri dari hanya 1 (satu) rangkaian Op-Amp atau bisa juga terdiri dari beberapa rangkaian Op-Amp. Jumlah rangkaian Op-Amp dalam satu kemasan IC dapat dibedakan menjadi Single Op-Amp, dual Op-Amp dan Quad Op-Amp. Ada juga IC yang didalamnya terdapat rangkaian Op-Amp disamping rangkaian utama lainnya.
Inilah dua aturan penting op-amp ideal yang digunakan untuk menganalisa rangkaian op-amp.
Inverting amplifier
Rangkaian dasar penguat inverting adalah seperti yang ditunjukkan pada gambar 1, dimana sinyal masukannya dibuat melalui input inverting. Seperti tersirat pada namanya, pembaca tentu sudah menduga bahwa fase keluaran dari penguat inverting ini akan selalu berbalikan dengan inputnya. Pada rangkaian ini, umpanbalik negatif di bangun melalui resistor R2.
Input
non-inverting pada rangkaian ini dihubungkan ke ground, atau v+ = 0.
Dengan mengingat dan menimbang aturan 1 (lihat aturan 1), maka akan
dipenuhi v- = v+ = 0. Karena nilainya = 0 namun tidak terhubung langsung
ke ground, input op-amp v- pada rangkaian ini dinamakan virtual ground.
Dengan fakta ini, dapat dihitung tegangan jepit pada R1 adalah vin – v-
= vin dan tegangan jepit pada reistor R2 adalah vout – v- = vout.
Kemudian dengan menggunakan aturan 2, di ketahui bahwa :
iin + iout = i- = 0, karena menurut aturan 2, arus masukan op-amp adalah 0.
iin + iout = vin/R1 + vout/R2 = 0
Selanjutnya
vout/R2 = - vin/R1 .... atau
vout/vin = - R2/R1
Jika penguatan G didefenisikan sebagai perbandingan tegangan keluaran terhadap tegangan masukan, maka dapat ditulis
…(1)
Impedansi rangkaian inverting didefenisikan sebagai impedansi input
dari sinyal masukan terhadap ground. Karena input inverting (-) pada
rangkaian ini diketahui adalah 0 (virtual ground) maka impendasi
rangkaian ini tentu saja adalah Zin = R1.
Non-Inverting amplifier
Prinsip
utama rangkaian penguat non-inverting adalah seperti yang diperlihatkan
pada gambar 2 berikut ini. Seperti namanya, penguat ini memiliki
masukan yang dibuat melalui input non-inverting. Dengan demikian
tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya.
Untuk menganalisa rangkaian penguat op-amp non inverting, caranya sama
seperti menganalisa rangkaian inverting.
gambar penguat non-inverter
Dengan menggunakan aturan 1 dan aturan 2, kita uraikan dulu beberapa fakta yang ada, antara lain :
vin = v+
v+ = v- = vin ..... lihat aturan 1.
Dari sini ketahui tegangan jepit pada R2 adalah vout – v- = vout – vin,
atau iout = (vout-vin)/R2. Lalu tegangan jepit pada R1 adalah v- = vin,
yang berarti arus iR1 = vin/R1.
Hukum kirchkof pada titik input inverting merupakan fakta yang mengatakan bahwa :
iout + i(-) = iR1
Aturan 2 mengatakan bahwa i(-) = 0 dan jika disubsitusi ke rumus yang sebelumnya, maka diperoleh
iout = iR1 dan Jika ditulis dengan tegangan jepit masing-masing maka diperoleh
(vout – vin)/R2 = vin/R1 yang kemudian dapat disederhanakan menjadi :
vout = vin (1 + R2/R1)
Jika penguatan G adalah perbandingan tegangan keluaran terhadap tegangan masukan, maka didapat penguatan op-amp non-inverting :
… (2)
Impendasi untuk rangkaian Op-amp non inverting adalah impedansi dari
input non-inverting op-amp tersebut. Dari datasheet, LM741 diketahui
memiliki impedansi input Zin = 108 to 1012 Ohm.
Integrator
Opamp
bisa juga digunakan untuk membuat rangkaian-rangkaian dengan respons
frekuensi, misalnya rangkaian penapis (filter). Salah satu contohnya
adalah rangkaian integrator seperti yang ditunjukkan pada gambar 3.
Rangkaian dasar sebuah integrator adalah rangkaian op-amp inverting,
hanya saja rangkaian umpanbaliknya (feedback) bukan resistor melainkan
menggunakan capasitor C.
gambar integrator
Mari
kita coba menganalisa rangkaian ini. Prinsipnya sama dengan menganalisa
rangkaian op-amp inverting. Dengan menggunakan 2 aturan op-amp (golden
rule) maka pada titik inverting akan didapat hubungan matematis :
iin = (vin – v-)/R = vin/R , dimana v- = 0 (aturan1)
iout = -C d(vout – v-)/dt = -C dvout/dt; v- = 0
iin = iout ; (aturan 2)
Maka jika disubtisusi, akan diperoleh persamaan :
iin = iout = vin/R = -C dvout/dt, atau dengan kata lain
...(3)
Dari sinilah nama rangkaian ini diambil, karena secara matematis
tegangan keluaran rangkaian ini merupakan fungsi integral dari tegangan
input. Sesuai dengan nama penemunya, rangkaian yang demikian dinamakan
juga rangkaian Miller Integral. Aplikasi yang paling populer menggunakan
rangkaian integrator adalah rangkaian pembangkit sinyal segitiga dari
inputnya yang berupa sinyal kotak.
Dengan analisa rangkaian integral serta notasi Fourier, dimana f = 1/t dan
…(4)
penguatan integrator tersebut dapat disederhanakan dengan rumus
…(5)
Sebenarnya rumus ini dapat diperoleh dengan cara lain, yaitu dengan mengingat rumus dasar penguatan opamp inverting
G = - R2/R1. Pada rangkaian integrator (gambar 3) tersebut diketahui
Dengan demikian dapat diperoleh penguatan integrator tersebut seperti
persamaan (5) atau agar terlihat respons frekuensinya dapat juga ditulis
dengan
…(6)
Karena respons frekuensinya yang demikian, rangkain integrator ini
merupakan dasar dari low pass filter. Terlihat dari rumus tersebut
secara matematis, penguatan akan semakin kecil (meredam) jika frekuensi
sinyal input semakin besar.
Pada prakteknya, rangkaian feedback
integrator mesti diparalel dengan sebuah resistor dengan nilai misalnya
10 kali nilai R atau satu besaran tertentu yang diinginkan. Ketika
inputnya berupa sinyal dc (frekuensi = 0), kapasitor akan berupa saklar
terbuka. Jika tanpa resistor feedback seketika itu juga outputnya akan
saturasi sebab rangkaian umpanbalik op-amp menjadi open loop (penguatan
open loop opamp ideal tidak berhingga atau sangat besar). Nilai resistor
feedback sebesar 10R akan selalu menjamin output offset voltage (offset
tegangan keluaran) sebesar 10x sampai pada suatu frekuensi cutoff
tertentu.
Differensiator
Kalau komponen C pada
rangkaian penguat inverting di tempatkan di depan, maka akan diperoleh
rangkaian differensiator seperti pada gambar 4. Dengan analisa yang sama
seperti rangkaian integrator, akan diperoleh persamaan penguatannya :
…(7)
Rumus ini secara matematis menunjukkan bahwa tegangan keluaran vout
pada rangkaian ini adalah differensiasi dari tegangan input vin. Contoh
praktis dari hubungan matematis ini adalah jika tegangan input berupa
sinyal segitiga, maka outputnya akan menghasilkan sinyal kotak.
gambar differensiator
Bentuk rangkain differensiator adalah mirip dengan rangkaian inverting. Sehingga jika berangkat dari rumus penguat inverting
G = -R2/R1
dan pada rangkaian differensiator diketahui :
maka jika besaran ini disubtitusikan akan didapat rumus penguat differensiator
…(8)
Dari
hubungan ini terlihat sistem akan meloloskan frekuensi tinggi (high
pass filter), dimana besar penguatan berbanding lurus dengan frekuensi.
Namun demikian, sistem seperti ini akan menguatkan noise yang umumnya
berfrekuensi tinggi. Untuk praktisnya, rangkain ini dibuat dengan
penguatan dc sebesar 1 (unity gain). Biasanya kapasitor diseri dengan
sebuah resistor yang nilainya sama dengan R. Dengan cara ini akan
diperoleh penguatan 1 (unity gain) pada nilai frekuensi cutoff tertentu.
Transistor adalah sebuah komponen elektronika yang digunakan untuk penguat, sebagai sirkuit pemutus, sebagai penyambung, sebagai stabilitas tegangan, modulasi sinyal dan lain-lain. Fungsi transistor juga sebagai kran listrik yang dimana berdasarkan tegangan inputnya, memungkinkan pengalihat listrik yang akurat yang berasal dari sumber listrik.
Transistor seperti gambar diatas dapat disebut juga transistor bipolar atau transistor BJT (Bipolar Junction Transistor). Transistor bipolar adalah inovasi yang menggantikan transistor tabung (vacum tube). Selain dimensi transistor bipolar yang relatif lebih kecil, disipasi dayanya juga lebih kecil sehingga dapat bekerja pada suhu yang lebih dingin. Dalam beberapa aplikasi, transistor tabung masih digunakan terutama pada aplikasi audio, untuk mendapatkan kualitas suara yang baik, namun konsumsi dayanya sangat besar. Sebab untuk dapat melepaskan elektron, teknik yang digunakan adalah pemanasan filamen seperti pada lampu pijar.
Transistor bipolar memiliki 2 junction yang dapat disamakan dengan penggabungan 2 buah dioda. Emiter-Base adalah satu junction dan Base-Kolektor junction lainnya itulah kenapa disebut (Bipolar Junction Transistor). Seperti pada dioda, arus hanya akan mengalir hanya jika diberi bias positif, yaitu hanya jika tegangan pada material P lebih positif daripada material N (forward bias). Pada gambar ilustrasi transistor NPN berikut ini, junction base-emiter diberi bias positif sedangkan basecolector mendapat bias negatif (reverse bias).Karena base-emiter mendapat bias positif maka seperti pada dioda, electron mengalir dari emiter menuju base. Kolektor pada rangkaian ini lebih positif, sebab mendapat tegangan positif. Karena kolektor ini lebih positif, aliran elektron bergerak menuju kutup ini. Misalnya tidak ada kolektor, aliran elektron seluruhnya akan menuju base seperti pada dioda. Tetapi karena lebar base yang sangat tipis, hanya sebagian elektron yang dapat bergabung dengan hole yang ada pada base. Sebagian besar akan menembus lapisan base menuju kolektor. Inilah alasannya mengapa jika dua diode digabungkan tidak dapat menjadi sebuah transistor, karena persyaratannya adalah lebar base harus sangat tipis sehingga dapat diterjang oleh elektron.
Jika misalnya tegangan base-emitor dibalik (reverse bias), maka tidak akan terjadi aliran elektron dari emitor menuju kolektor. Jika pelan-pelan ‘keran’ base diberi bias maju (forward bias), elektron mengalir menuju kolektor dan besarnya sebanding dengan besar arus bias base yang diberikan. Dengan kata lain, arus base mengatur banyaknya electron yang mengalir dari emiter menuju kolektor. Ini yang dinamakan efek penguatan transistor, karena arus base yang kecil menghasilkan arus emiter-colector yang lebih besar. Istilah amplifier (penguatan) sebenarnya bukanlah penguatan dalam arti sebenarnya, karena dengan penjelasan di atas sebenarnya yang terjadi bukan penguatan, melainkan arus yang lebih kecil mengontrol aliran arus yang lebih besar. Juga dapat dijelaskan bahwa base mengatur membuka dan menutup aliran arus emiter-kolektor (switch on/off).
Pada transistor PNP, fenomena yang sama dapat dijelaskan dengan memberikan bias seperti pada gambar berikut. Dalam hal ini yang disebut perpindahan arus adalah arus hole.Perlu diingat, walaupun tidak ada perbedaan pada doping bahan pembuat emitor dan kolektor, namun pada prakteknya emitor dan kolektor tidak dapat dibalik.
Dari satu bahan silikon (monolitic), emitor dibuat terlebih dahulu, kemudian base dengan doping yang berbeda dan terakhir adalah kolektor. Terkadang dibuat juga efek dioda pada terminal-terminalnya sehingga arus hanya akan terjadi pada arah yang dikehendaki. Untuk memudahkan pembahasan prinsip bias transistor lebih lanjut, berikut adalah terminologi parameter transistor. Dalam hal ini arah arus adalah dari potensial yang lebih besar ke potensial yang lebih kecil.
LCD (Liquid Crystal Display)Gambar Rangkaian Display LCD character 2 x 16 |
Sensor LDR
gambar Karakteristik LDR |
- Siapkan semua komponen yang dibutuhkan
- letakkan komponen pada lembar kerja proteus
- rangkai setiap komponen sehingga menjadi sebuah rangkaian
- jalankan rangkaian
5. Rangkaian [kembali]
6. Prinsip Kerja [kembali]
Pada rangkaian terdapat 3 bus data. Yaitu bus alamat (address), bus
data, dan bus kontrol. Pda rangkaian terdapat IC 80C51 sebagai
mikrokontroller. Kemudian ada IC 74LS373 dan IC 74LS245 sebagai
rangkaian latch dan buffer. Kemudian ada IC 6116 sebagai RAM untuk
menyimpan data sementara. IC 2764 sebagai ROM untuk menyimpan data
secara permanen. Lalu ada IC 8255A sebagai IO dan IC 74LS138 yang
berfungsi untuk mengatur chip mana yang akan aktif. Mulanya rangkaian
pembangkit clock menghasilkan clock yang diteruskan ke mikrokontroller
IC 80C51. Saat mendapatkan mendapatkan input clock, IC 80C51 akan
mengirimkan alamat ke rangkaian latch dan buffer. Untuk alamat rendah
dikirimkan melalui port 0. Alamat rendah kemudian masuk ke IC 74LS373.
Alamat tinggi dikirimkan dari port 2 menuju IC 74LS245. OE (Output
Enable) pada IC 74LS373 sudah terhubung ke ground dan dalam keadaan
aktif (aktif LOW). Dan pin CE (Chip Enable) pada IC 74LS245 juga sudah
dihubungkan ke ground dan dalam keadaan aktif (aktif LOW). Sehingga data
juga masuk ke IC 74LS245. Setelah data dikirimkan, maka sinyal kontrol
ALE yang berlogika 1 masuk ke LE yang aktif high sehingga data pada IC
74LS373 berpindah dari D ke Q. Setelah itu data ditahan pada pin Q. Pada
IC 74LS245 sudah dalam keadaan aktif, dan diberikan logika 1 pada pin
D/~R. Yang artinya data berpindah dari A ke B. Data kemudian menyebar ke
IC 6116 RAM dan bergabung dengan data alamat rendah dari IC 74LS373.
Alamatnya dapat masuk ke RAM, ROM, dan IC 74LS138. Alamat A15-A12
berlogika 0. Sehingga saat masuk ke IC 74LS378, ketiga input nya
bernilai 0 sehingga pin yang aktif adalah Y0. Pin Y0 terhubung ke pin E
(Enable) dari IC 6116. Pada tahap inilah data telah sampai ke IC 6116.
Maka sinyal kontrol RD dikirimkan ke IC 6116 untuk membaca data. Dia
akan mengambil data yang dikirim dari mikrokontroller. Data kemudian
diteruskan ke pin B IC 74LS245. Data ditahan di pin B. Pada input AB/~BA
dihubungkan dengan gerbang AND. Untuk memindahkan data dari B ke A maka
harus diberikan logika 0. PSEN memiliki logika 1 apabila ingin membaca
RAM dengan RD berlogika 0. Sehingga dihasilkan logika 0 sebagai output
dari gerbang AND. Sehingga pada pin D/~R dijalankan perintah Read
sehingga data berpindah dari B ke A. Data masuk kembali ke port 0. LM35
mengukur suhu, Saat suhu berada diatas standar yang telah ditetapkan
menggunakan program maka akan ada arus yang mengalir ke op
amp. Op amp atau komparator membandingkan tegangan output LM35 dengan
tegangan referensi. Tegangan output kemudian mengalirkan arus ke ADC
0804. ADC 0804 mengubah sinyal analog hasil pembacaan sensor menjadi
sinyal digital yang kemudian diteruskan. Terdapat juga rangkaian yang
dihubungkan ke tegangan referensi ADC 0804. data akan dikirim ke IO lalu
diteruskan ke RAM. Pada saat ini WR berlogika 0 dan RD berlogika 1.
Sehingga IC melaksanakan perintah Write. Data yang tersimpan di RAM
bergerak dari A ke B lalu diteruskan ke IO sehingga dihasilkan output di
port A yang terhubung ke DAC. Data digital diubah menjadi analog.
Setelah itu data dipindahkan ke RAM untuk disimpan sementara. Saat IC
8255A yang terhubung ke DAC 0808 aktif, maka akan muncul tegangan lalu
diperkuat oleh op-amp. Saat ada tegangan pada basis transistor, maka
transistor akan on sehingga arus dapat mengalir dari collector ke
emittor sehingga akan mengaktifkan relay dan motor hidup.
7. Video Simulasi [kembali]
8. Link Download [kembali]
Tidak ada komentar:
Posting Komentar